
Alok Choudhary, Professor
Director: Center for Ultra-Scale Computing 

and Security
Dept. of Electrical & Computer Engineering

And Kellogg School of Management
Northwestern University

choudhar@ece.northwestern.edu

Scalable I/O Middleware and File System 
Optimizations for High-Performance 

Computing

Collaborators: Prof. M. Kandemir (Penn State) and Dr. R. Thakur (ANL)



August 21, 2006 @ANC HECIWG 2

Objectives
Middleware Caching optimizations
Application oriented benchmark kernels



August 21, 2006 @ANC HECIWG 3

Typical Software Layers for I/O in HEC

Based on a lot of current 
apps
High-Level 

E.g., NetCDF, HDF, ABC
Applications use these

Mid-level
E.g., MPI-IO
Performance experience

Low Level
E.g., File Systems 
Critical for performance in 
above

Parallel netCDF/HDF/..

Compute node Compute 
node

Compute 
node

Compute 
node

switch 
network

I/O
Server

I/O
Server

I/O
Server

MPI-IO

End-to-End Performance critical 

Parallel File System

Applications



August 21, 2006 @ANC HECIWG 4

pnetCDFHDF5

MPI-IO

Client-side file system

Server-side file system

Storage system

User application

Collectives, independents
I/O hints: access style (read_once, write_mostly, sequential, random, …), 
collective buffering, chunking, striping

Open mode (O_RDONLY, O_WRONLY, O_SYNC), file status, locking, 
flushing, cache invalidation
Machine dependent: data shipping, sparse access, double buffering

Access base on : file blocks, objects Scheduling, aggregation

Read-ahead, write-behind, metadata management, file striping, security, 
redundancy

Data types (byte-alignment), data structures (flexible dimensionality), 
hierarchical data model

Access patterns: shared files, individual files, data partitioning, check-
pointing, data structures, inter-data relationship

application-aware caching, pre-fetching, file grouping, “vector 
of bytes”, flexible caching control, object-based data 
alignment, memory-file layout mapping, more control over 
hardware, Shared file descriptors, 

Group locks, flexible locking control, scalable metadata 
management, zero-copying, QoS, Shared file descriptors, 

Active storage: data filtering,object-based/hierarchical 
storage management, indexing, mining, power-management

Caching, fault tolerance, read-ahead, write-behind, I/O load 
balance, wide-area, heterogeneous FS support, thread-safe



August 21, 2006 @ANC HECIWG 5

Middleware Caching: Direct Access 
Cache System (DAChe)

Main Idea: Runtime Cache in user 
space to capture small, irregular 
accesses
Portable
4 main subsystems

I/O interface and protocol
Cache Management
Look-up management
Locking Subsystem

DAChe InterfaceDAChe Interface

Cache MgmtCache Mgmt LookLook--upup LockingLocking

ApplicationApplication



August 21, 2006 @ANC HECIWG 6

Example Design & Implementation
Global cache metadata management

A file is logically divided into blocks
Metadata of blocks are distributed across all MPI clients
Block-based file locking is used for consistency control

Local cache page management
At most one copy of file data can be cached at any time
Handling local/remote requests to locally cached data
Page eviction is based on local reference entirely
Page migration is triggered by global metadata reference



August 21, 2006 @ANC HECIWG 7

Read Example

page 3
page 2
page 1

1P 2P 3P0P
Cache pages at compute nodes

local memorylocal memory local memorylocal memory

page 3
page 2
page 1

page 3
page 2
page 1

page 3
page 2
page 1
page 2

Al
re

ad
y c

ac
he

d b
y P

2

Logical partitioning view of a file
block 4block 3block 2block 1block 0 block 3

m
et

ad
at

a 
lo

ok
up

Distributed metadata
P0

block 8 status
block 4 status
block 0 status

block 9 status
block 5 status
block 1 status

P1

block 10 status
block 6 status
block 2 status

P2

block 11 status
block 7 status
block 3 status

P3

If n
ot 

ye
t c

ac
he

d
File system

page 4

Metadata
communication

Cache data
communication

System call



August 21, 2006 @ANC HECIWG 8

Illustrative Performance Evaluation
Platforms

Tungsten, a Linux cluster @ NCSA
Lustre parallel file system

Mercury, an IBM Linux cluster @ NCSA
GPFS parallel file system

MPICH
Caching added at ADIO layer



August 21, 2006 @ANC HECIWG 9

BTIO

Block tri-diagonal array partitioning
writes followed by reads
I/O amount: 

Class B (1023) is 1.6 GB
Class C (1623) is 6.5 GB

P0,0 P0,1P0,2

P1,0 P1,1P1,2

P2,0 P2,1P2,2

P2,0

Local array is in 4D

P2,0

P2,0File view
BTIO: 102x102x102 on GPFS

0

50

100

150

200

250

300

350

400

450

500

16 25 36 49 64
Number of compute nodes

I/
O

 b
a
n
d
w

id
th

 i
n
 M

B
/s

native
caching

BTIO: 162x162x162 on GPFS

0

100

200

300

400

500

600

700

16 25 36 49 64

Number of compute nodes

I/
O

 b
a
n
d
w

id
th

 i
n
 M

B
/s

native
caching

BTIO: 102x102x102 on Lustre

0

50

100

150

200

250

300

350

400

16 25 36 49 64
Number of compute nodes

I/
O

 b
a
n
d
w

id
th

 i
n
 M

B
/s

native
caching

BTIO: 162x162x162 on Lustre

0

50

100

150

200

250

300

350

400

450

500

16 25 36 49 64

Number of compute nodes

I/
O

 b
a
n
d
w

id
th

 i
n
 M

B
/s

native
caching



August 21, 2006 @ANC HECIWG 10

Aligning +Caching Illustration
BTIO:102x102x102 on Lustre

0

50

100

150

200

250

300

350

400

16 25 36 49 64
Number of compute nodes

I/
O

 b
a
n
d
w

id
th

 i
n
 M

B
/s

native native+FDalign

caching caching+FDalign

BTIO: 162x162x162 on Lustre

0

100

200

300

400

500

600

16 25 36 49 64
Number of compute nodes

I/
O

 b
a
n
d
w

id
th

 i
n
 M

B
/s

native native+FDalign

caching caching+FDalign

BTIO: 102x102x102 on GPFS

0

100

200

300

400

500

600

16 25 36 49 64

Number of compute nodes

I/
O

 b
a
n
d
w

id
th

 i
n
 M

B
/s

native native+FDalign
caching cache+FDalign

BTIO: 162x162x162 on GPFS

0

100

200

300

400

500

600

700

800

16 25 36 49 64
Number of compute nodes

I/
O

 b
a
n
d
w

id
th

 i
n
 M

B
/s

native native+FDalign
caching cache+FDalign


